首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2344篇
  免费   55篇
  国内免费   10篇
化学   1724篇
晶体学   9篇
力学   61篇
数学   318篇
物理学   297篇
  2021年   15篇
  2020年   13篇
  2019年   25篇
  2018年   24篇
  2016年   34篇
  2015年   36篇
  2014年   38篇
  2013年   141篇
  2012年   115篇
  2011年   108篇
  2010年   87篇
  2009年   89篇
  2008年   103篇
  2007年   111篇
  2006年   117篇
  2005年   122篇
  2004年   105篇
  2003年   92篇
  2002年   69篇
  2001年   25篇
  2000年   27篇
  1999年   21篇
  1998年   17篇
  1997年   23篇
  1996年   31篇
  1995年   24篇
  1994年   31篇
  1993年   28篇
  1992年   20篇
  1991年   30篇
  1990年   25篇
  1989年   16篇
  1988年   15篇
  1987年   19篇
  1985年   34篇
  1984年   41篇
  1983年   25篇
  1982年   39篇
  1981年   34篇
  1980年   46篇
  1979年   42篇
  1978年   52篇
  1977年   38篇
  1976年   32篇
  1975年   36篇
  1974年   36篇
  1973年   37篇
  1972年   15篇
  1970年   11篇
  1966年   13篇
排序方式: 共有2409条查询结果,搜索用时 31 毫秒
101.
102.
Developing an analogue of Solovay reducibility in the higher recursion setting, we show that results from the classical computably enumerable case can be extended to the new context.  相似文献   
103.
Complexing polymer‐coated electrodes have been synthesized by oxidative electropolymerization of ethylenediamine tetra‐N‐(3‐pyrrole‐1‐yl)propylacetamide (monomer L ). The presence of four polymerizable pyrrole fragments on the same EDTA skeleton was thought to confer enhanced rigidity and controlled dimensionality to the resulting complexing materials, which were used for the electrochemical detection of Hg(II), Cu(II), Pb(II) and Cd(II) ions by means of the chemical preconcentration‐anodic stripping technique. The polyamide electrode material showed particularly a significant selectivity towards mercury ions, even in the presence of a large excess of other metal cations. Moreover, the use of imprinted polymer‐coated electrodes prepared by electropolymerization of L in the presence of metal cations turned out to significantly improve the detection limits, down to 5×10?10 mol L?1 for Hg(II) and Cu(II) species.  相似文献   
104.
The first generation anionic iron(III) porphyrin [Fe(TSPP)] and the second generation anionic complexes [Fe(TDFSPP)], [Fe(TCFSPP)], and [Fe(TDCSPP)] were immobilized into three-dimensionally macroporous layered double hydroxide (3DM-LDH), using the direct reconstruction of 3DM-LDH from macroporous mixed oxides MOX or the anionic exchange on DDS intercalated 3DM-LDH. The macroporous layered double hydroxides were obtained at the surface of nanometric polystyrene spheres, which were synthesized by an inverse opal method. Polystyrene was removed after calcination in oxidizing atmosphere, nanostructured mixed oxides (3DM-MOX) were obtained, which after reconstruction give origin to macroporous layered double hydroxide (3DM-LDH). Following metalloporphyrin immobilization, the resulting materials were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), UV–vis (glycerin mull) spectroscopy, attenuated total reflectance Fourier transform infrared spectroscopy (ATR/FTIR), and electron paramagnetic resonance (EPR). Results revealed that the complexes are either immobilized at the surface of the macroporous layered double hydroxide or intercalated between the layers, displacing some dodecylsufate anions. The obtained materials were investigated as catalysts for oxidation reactions, to find out whether they function as cytochrome P-450 models.  相似文献   
105.
Baseline separation of 18 new substituted benzimidazole derivatives, potent AMP‐activated protein kinase (AMPK) activators, with one chiral center, was achieved by CD‐EKC using sulfated and highly sulfated CDs (SCDs and HS‐CDs) as chiral selectors. The influence of the type and concentration of the chiral selectors on the enantioseparations was investigated. The SCDs exhibit a very high enantioselectivity power since they allow excellent enantiomeric resolutions compared to those obtained with the neutral CDs. The enantiomers were resolved with analysis times around 6 min using 25 mM phosphate buffer at pH 2.5 containing either β‐S‐CD, HS‐β‐CD, HS‐γ‐CD (3 or 4% w/v) at 25°C, with a voltage of 20 kV. The apparent association constants of the inclusion complexes were calculated. The study of the solute structure‐enantioseparation relationships seems to show the high contribution of the interactions between the solutes phenyl ring and the CDs to the enantiorecognition process. The optimized method was briefly validated (LOD less than 1%) and the purity of enantiomers of compound 3 was determined. The enantiomer migration shows reversal order depending on the kind of CD.  相似文献   
106.
Quantitation of trace levels of domoic acid (DA) in seawater samples usually requires labour-intensive protocols involving chemical derivatization with 9-fluorenylmethylchloroformate and liquid chromatography with fluorescence detection (FMOC–LC–FLD). Procedures based on LC–MS have been published, but time-consuming and costly solid-phase extraction pre-concentration steps are required to achieve suitable detection limits. This paper describes an alternative, simple and inexpensive LC method with ultraviolet detection (LC–UVD) for the routine analysis of trace levels of DA in seawater without the use of sample pre-concentration or derivatization steps. Qualitative confirmation of DA identity in dubious samples can be achieved by mass spectrometry (LC–MS) using the same chromatographic conditions. Addition of an ion-pairing/acidifying agent (0.15% trifluoroacetic acid) to sample extracts and the use of a gradient elution permitted the direct analysis of large sample volumes (100 μl), resulting in both high selectivity and sensitivity (limit of detection = 42 pg ml−1 by LC–UVD and 15 pg ml−1 by LC–MS). Same-day precision varied between 0.4 and 5%, depending on the detection method and DA concentration. Mean recoveries of spiked DA in seawater by LC–UVD were 98.8% at 0.1–10 ng ml−1 and 99.8% at 50–1000 ng ml−1. LC–UVD exhibited strong correlation with FMOC–LC–FLD during inter-laboratory analysis of Pseudo-nitzschia multiseries cultures containing 60–2000 ng DA ml−1 (r2 > 0.99), but more variable results were obtained by LC–MS (r2 = 0.85). This new technique was used to confirm the presence of trace DA levels in low-toxicity Pseudo-nitzschia spp. isolates (0.2–1.6 ng ml−1) and in whole-water field samples (0.3–5.8 ng ml−1), even in the absence of detectable Pseudo-nitzschia spp. cells in the water column.  相似文献   
107.
Treatment of Ln(NO3)3?nH2O with 1 or 2 equiv 2,2′‐bipyrimidine (BPM) in dry THF readily afforded the monometallic complexes [Ln(NO3)3(bpm)2] (Ln=Eu, Gd, Dy, Tm) or [Ln(NO3)3(bpm)2]?THF (Ln=Eu, Tb, Er, Yb) after recrystallization from MeOH or THF, respectively. Reactions with nitrate salts of the larger lanthanide ions (Ln=Ce, Nd, Sm) yielded one of two distinct monometallic complexes, depending on the recrystallization solvent: [Ln(NO3)3(bpm)2]?THF (Ln=Nd, Sm) from THF, or [Ln(NO3)3(bpm)(MeOH)2]?MeOH (Ln=Ce, Nd, Sm) from MeOH. Treatment of UO2(NO3)2?6H2O with 1 equiv BPM in THF afforded the monoadduct [UO2(NO3)2(bpm)] after recrystallization from MeOH. The complexes were characterized by their crystal structure. Solid‐state luminescence measurements on these monometallic complexes showed that BPM is an efficient sensitizer of the luminescence of both the lanthanide and the uranyl ions emitting visible light, as well as of the YbIII ion emitting in the near‐IR. For Tb, Dy, Eu, and Yb complexes, energy transfer was quite efficient, resulting in quantum yields of 80.0, 5.1, 70.0, and 0.8 %, respectively. All these complexes in the solid state were stable in air.  相似文献   
108.
catena‐Poly­[[aqua­lanthanum(III)]‐μ‐(8‐carboxy­octanoato)‐μ‐octanedioato], [La(C8H12O4)(C8H13O4)(H2O)]n, is, to our knowledge, the first reported rare‐earth complex containing a flexible long‐chain ligand that crystallizes without water of crystallization. The layered polymeric structure is built from infinite chains of one‐edge‐sharing LaO8(H2O) polyhedra, connected through the carbon backbone chains of the ligands. The two chemically different ligands act in the same coordination modes, exhibiting chelating bonds and μ‐1,1‐bridging monodentate linkage, and adopting the same extended conformation. In the relatively limited hydrogen‐bonding network, a very strong hydrogen bond between the deprotonated and protonated ligand ends stabilizes the framework.  相似文献   
109.
The existence of gas‐phase electrostatic ion–ion interactions between protonated sites on peptides ([Glu] Fibrinopeptide B, Angiotensin I and [Asn1, Val5]‐Angiotensin II) and attaching anions (ClO4? and HSO4?) derived from strong inorganic acids has been confirmed by CID MS/MS. Evidence for ion–ion interactions comes especially from the product ions formed during the first dissociation step, where, in addition to the expected loss of the anion or neutral acid, other product ions are also observed that require covalent bond cleavage (i.e. H2O loss when several carboxylate groups are present, or NH3 loss when only one carboxylate group is present). For [[Glu] Fibrinopeptide B + HSO4]?, under CID, H2O water loss was found to require less energy than H2SO4 departure. This indicates that the interaction between HSO4? and the peptide is stronger than the covalent bond holding the hydroxyl group, and must be an ion–ion interaction. The strength and stability of this type of ion‐pairing interaction are highly dependent on the accessibility of additional mobile charges to the site. Positive mobile charges such as protons from the peptide can be transferred to the attaching anion to possibly form a neutral that may depart from the complex. Alternatively, an ion–ion interaction can be disrupted by a competing proximal additional negatively charged site of the peptide that can potentially form a salt bridge with the positively charged site and thereby facilitate the attaching anion's departure. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
110.
Reproducibility among different types of excitation modes is a major bottleneck in the field of tandem mass spectrometry library development in metabolomics. In this study, we specifically evaluated the influence of collision voltage and activation time parameters on tandem mass spectrometry spectra for various excitation modes [collision‐induced dissociation (CID), pulsed Q dissociation (PQD) and higher‐energy collision dissociation (HCD)] of Orbitrap‐based instruments. For this purpose, internal energy deposition was probed using an approach based on Rice–Rampserger–Kassel–Marcus modeling with three thermometer compounds of different degree of freedom (69, 228 and 420) and a thermal model. This model treats consecutively the activation and decomposition steps, and the survival precursor ion populations are characterized by truncated Maxwell–Boltzmann internal energy distributions. This study demonstrates that the activation time has a significant impact on MS/MS spectra using the CID and PQD modes. The proposed model seems suitable to describe the multiple collision regime in the PQD and HCD modes. Linear relationships between mean internal energy and collision voltage are shown for the latter modes and the three thermometer molecules. These results suggest that a calibration based on the collision voltage should provide reproducible for PQD, HCD to be compared with CID in tandem in space instruments. However, an important signal loss is observed in PQD excitation mode whatever the mass of the studied compounds, which may affect not only parent ions but also fragment ions depending on the fragmentation parameters. A calibration approach for the CID mode based on the variation of activation time parameter is more appropriate than one based on collision voltage. In fact, the activation time parameter in CID induces a modification of the collisional regime and thus helps control the orientation of the fragmentation pathways (competitive or consecutive dissociations). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号